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ABSTRACT

A composite-based statistical model utilizing Northern Hemisphere teleconnection patterns is developed

to predict East Asian wintertime surface air temperature for lead times out to 6 weeks. The level of prediction

is determined by using the Heidke skill score. The prediction skill of the statistical model is compared with

that of hindcast simulations by a climate model, Global Seasonal Forecast System, version 5. When employed

individually, three teleconnections (i.e., the east Atlantic/western Russian, Scandinavian, and polar/Eurasian

teleconnection patterns) are found to provide skillful predictions for lead times beyond 4–5 weeks. When

information from the teleconnections and the long-term linear trend are combined, the statistical model

outperforms the climate model for lead times beyond 3 weeks, especially during those times when the

teleconnections are in their active phases.

1. Introduction

There has been rising interest in subseasonal weather

and climate prediction for lead times beyond two weeks

but less than a month, which lie between the time scales

of short-range weather forecasts and long-range monthly

prediction. Up to approximately 7–10 days, weather

forecasts heavily rely on predictions from numerical

weather prediction models, which are formulated by the

physical laws and the subgrid-scale parameterizations

of the atmosphere. However, the predictability of such

a nonlinear forecast system diminishes rapidly due to

inevitable errors in the initial conditions, along with

imperfect representations of the atmospheric processes

in the model. Theoretically, the nonlinearity of the at-

mosphere hinders a deterministic prediction beyond

approximately 2 weeks (Lorenz 1963), and operational

centers push the limit by employing ensemble prediction

systems that generate a range of possible outcomes. At

longer lead times beyond one month, slowly varying

boundary conditions, such as sea surface temperature

(SST) and land surface conditions, allow us to assemble

a probabilistic forecast on the statistics of weather and

hence on climate. At this time scale, both ensemble

forecasts using dynamical models and statistical models

based on empirical relationships produce skillful pre-

dictions over some regions. For subseasonal prediction,

however, the combination of initial condition error andCorresponding author: Changhyun Yoo, cyoo@ewha.ac.kr
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the brief time for boundary conditions to take effect

makes skillful predictions a challenging problem both

for operational centers and for the research community.

Nonetheless, the importance of accurate subseasonal

prediction has increased due to growing concerns of fre-

quent extreme weather events that make considerable

societal and economic impacts.

Despite the challenges of subseasonal prediction,

hope may be found in large-scale modes of climate

variability, frequently recurring patterns that explain a

large portion of climate variance, which are a potential

source of skill targeting lead time scales longer than

two weeks. For North American subseasonal prediction,

the climate modes of particular interest are those that

moderate large-scale convection in the tropics. This in-

cludes El Niño–Southern Oscillation (ENSO) and the

Madden–Julian oscillation (MJO; Madden and Julian

1971, 1972). As the most pronounced pattern of in-

terannual tropical SST variability, ENSO plays an im-

portant role in determining the strength of the seasonal

mean convection anomalies over the tropical Pacific.

For example, during the positive phase of ENSO (El

Niño), a dipole anomaly of enhanced and reduced con-

vection can be seen over the central and western Pacific,

respectively (e.g., Fig. 1b in Son et al. 2017). A similar

spatial pattern of convection anomalies with the oppo-

site sign can be seen during the negative ENSO phase

(La Niña). At subseasonal time scales, the MJO is as-

sociated with tropical convection anomalies that re-

semble those associated with ENSO. With a period of

about 30–60 days, theMJO convection, coupled with the

circulation field, circumnavigates the equator. Consis-

tent with the finding that diabatic heating associated

with tropical convection can excite Rossby waves that

propagate from the tropics into the extratropics (e.g.,

Hoskins and Karoly 1981), it has been shown that the

responses to both ENSO (e.g., Horel and Wallace 1981;

Johnson and Feldstein 2010) and the MJO (e.g., Higgins

and Mo 1997; Cassou 2008; Lin et al. 2009; Riddle et al.

2013; Yoo et al. 2015) have a significant impact on the

extratropical circulation and surface air temperature

(SAT) (Halpert and Ropelewski 1992; Trenberth and

Caron 2000; Vecchi and Bond 2004; Yoo et al. 2012; Lin

2015; DelSole et al. 2017) on the subseasonal time scale.

These sources of subseasonal predictability take root

in the features that poleward propagating Rossby wave

activity, excited by tropical convection, takes about

one week to travel from the tropics to high latitudes

(Hoskins and Karoly 1981), that Rossby waves trig-

gered by tropical convection will persist for 2 to 3 weeks

even after the convection ceases (Branstator 2014),

and that the dominant low-frequency (period greater

than 10 days) extratropical teleconnection patterns,

such as the North Atlantic Oscillation (NAO) and

Pacific–North American (PNA) patterns, typically

persist for about two weeks (Feldstein 2000), even in

the absence of strong tropical convection (Dai et al.

2017).

Motivated by the finding that ENSO and the MJO

excite long-lived extratropical teleconnection pat-

terns, Johnson et al. (2014) constructed a statistical

forecast model for North American wintertime SAT

with lead times up to 6 weeks. The model relies on

the composite-based relationships between the extra-

tropical SAT and the above-mentioned two climate

modes (ENSO and the MJO) and additionally the long-

term linear SAT trend. The phase information of the

climate modes is the key to capture changes in the

probability distribution of the extratropical SAT re-

sponse. It turns out that the skill of the statistical model

during some phases of ENSO and the MJO exceeds the

typical skill of dynamical models for lead times beyond

3–4 weeks. This composite-based model is convenient

for investigating subsamples, such as strongMJOevents,

which may provide increased forecast skill relative to

moderate events. Their model and a similar variant

currently provide guidance for the 3–4-week operational

predictions of the SAT by the National Oceanic and

Atmospheric Administration (NOAA) Climate Pre-

diction Center (CPC) (http://www.cpc.ncep.noaa.gov/

products/predictions/WK34/).

Although the connections between both ENSO and

MJO and North American climate are well established,

it remains to be determined if such subseasonal skill can

be realized over East Asia. Building upon Johnson et al.

(2014), this study constructs a composite-based statisti-

cal model for East Asian wintertime SAT with lead

times out to 6 weeks. Here, we attempt to obtain skill

from the dominant low-frequency extratropical atmo-

spheric teleconnection patterns. The rationale behind

this approach is as follows:

1) Low-frequency variability of the atmosphere can be

predominantly described in terms of recurrent and

persistent teleconnection patterns (Wallace and

Gutzler 1981; Barnston and Livezey 1987). Tele-

connection patterns may not be ideal candidates for

predictions out to 6 weeks because teleconnections

persist for about 2 weeks in the absence of strong

tropical convection, as discussed above, and one

week longer for the PNA when there is strong

convection (Dai et al. 2017). However, the ampli-

tude and influence of the teleconnection patterns

may extend beyond their decorrelation time scales

[i.e., ;1–2 weeks, measured by the e-folding time

scales of autocorrelations, which is a measure of linear
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temporal persistence, as in Table 2 of Feldstein (2000)].

As will be shown, this is indeed the case as the surface

footprint of the teleconnection patterns remains out to

3–4 weeks or even longer. This suggests that the initial

state of teleconnection patterns can provide informa-

tion for subseasonal forecasts with a lead time of sev-

eral weeks ahead.

2) The geographical location of East Asia may not be

ideally suited to benefit from ENSO or the MJO,

although a recent study finds theMJO influencing East

Asia via a local Hadley circulation (Seo et al. 2016).

The poleward propagating Rossby waves, excited by

ENSO or MJO, propagate downstream to North

America. This location of these Rossby waves is

influenced by the strong potential vorticity gradient

associated with the East Asian jet, which acts as a

waveguide (Branstator 2002), while at the same time

playing an important role in contributing to the Rossby

wave source (Sardeshmukh and Hoskins 1988). In fact,

an analysis of the low-frequency vorticity equation

budget associated with the MJO suggests that the

Rossby waves are initially triggered near the jet center

over the northwestern subtropical Pacific but escape to

the extratropics near the central Pacific at the jet exit

region (Lukens et al. 2017). We will show that for East

Asian SAT, the prediction skill tends to originate from

the teleconnection patterns located upstream.

Therefore, in the present study, we investigate the

level of prediction skill that can be obtained by employ-

ing Northern Hemisphere teleconnection patterns, tar-

geting the East Asian wintertime [December–February

(DJF)] SAT, into a statistical forecast model. Consistent

with the results of Johnson et al. (2014), we show that the

statistical model can outperform a dynamical model at

lead times exceeding 3 weeks. The present study dem-

onstrates that some individual teleconnection indices

can provide substantial skill for East Asia. In addition,

we show that a linear combination of the teleconnection

patterns, as well as the linear trend, can enhance forecast

skill.

The remainder of the study is organized as follows. In

section 2, the data and methods that are used to produce

and evaluate the forecasts are presented. Section 3 il-

lustrates the weekly SAT forecasts from the dynamical

and cross-validated statistical models. A discussion and

the conclusions are presented in section 4.

2. Data and methods

a. Data for the statistical model

To build the statistical model, we use the daily SAT

and 500-hPa geopotential height of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

FIG. 1. Composites of the DJF 2-m temperature anomalies for the positive phases of seven teleconnection

patterns: (a) EAWR, (b) SCAND, (c) EA, (d) WP, (e) PNA, (f) NAO, and (g) PE. Solid (dashed) contours are

positive (negative), and the zero contours are omitted. The contour interval is 0.5K. The positive phase is defined

when the value of an index exceeds 0.5 standard deviations.
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interim reanalysis (ERA-Interim; Dee et al. 2011)

dataset for the period from 1979 through 2014. The data,

which have a native horizontal resolution of ;60km,

have been regridded to a 2.58 latitude 3 2.58 longitude
grid. The error due to the spatial interpolation is docu-

mented in appendixA. Anomalies are computed at each

grid point by subtracting the seasonal cycle, where the

seasonal cycle is defined as the first four harmonics of

the calendar day means. For the SAT, to remove the

variability at the weather time scale, a 7-day running

average is applied to the anomalies.

The Northern Hemisphere teleconnection patterns

are obtained from theNOAACPCwebsite (http://www.

cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml). The

patterns are defined through the use of rotated principal

component analysis on the monthly mean standardized

500-hPa geopotential height anomalies for 208–908N and

the years 1950–2000. Note that some patterns of the CPC,

such as the NAO and PNA, are robustly reproduced

when analyzed using the period of 1979–2014 (not

shown). However, the other patterns of the CPC show

only partial matches to those from the recent period,

presumably due to a changing climate. Nonetheless, for

reproducibility and operational use of our results, we

choose to use the CPC indices. Furthermore, the sensi-

tivity to the number of retained unrotated EOFs was

examined. It was found that 7 similar rotated EOFs were

found when 8, 10, and 12 unrotated EOFs were used.

Also, note that for each teleconnection pattern, the same

spatial pattern with opposite sign is used for the positive

and negative phases. This may contribute to a linear bias

in the statistical relationship in theHSS values for various

lead times.

Among the 10 teleconnection patterns monitored

by the NOAA/CPC, we explore the seven patterns that

FIG. 2. Skewness and kurtosis map of the DJF 7-day running

averaged SAT anomaly distribution of the daily ERA-Interim

from 1979–2014. Value 3 is subtracted from the kurtosis so that

value zero indicates a mesokurtotic distribution.

FIG. 3. The HSS of the 7-day running averaged SAT anomalies in GloSea5 hindcast experiments evaluated during

DJF for each grid point. Forecast lead times from lag11 week to lag16 weeks are shown. The shading interval is 5.
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can be defined in all seasons. These are the east At-

lantic (EA), east Atlantic/western Russia (EAWR),

NAO, polar/Eurasian (PE), PNA, Scandinavia (SCAND),

and west Pacific (WP) teleconnection patterns. Daily

indices are available only for the NAO and PNA, while

for other patterns indices are provided as monthly

values. Therefore, we compute daily indices by pro-

jecting the daily 500-hPa geopotential height anom-

alies onto the corresponding monthly teleconnection

patterns, where the patterns are defined for each

month by generating correlation maps between the

monthly indices and the monthly 500-hPa geopo-

tential height anomalies at each grid point. When

tested for the NAO and PNA, this temporal down-

scaling technique produces daily indices that show

linear correlations of about 0.8 with those of the CPC,

which suggests roughly one-third of the CPC index

variance is unexplained by our downscaled indices

(appendix B).

For all teleconnection patterns, the positive (nega-

tive) phase is defined to have taken place when the

index is greater (less) than 0.5 (20.5) standard de-

viations.When the index is in between these values, it is

categorized as the neutral phase. This threshold of

0.5 standard deviations is subjectively chosen to bal-

ance the sample size with the signal amplitude and has

been used in previous studies to define phases (e.g.,

Nakamura andWallace 1990). We have used terciles to

evenly distribute the number of days in each phase, and

the results are similar to those of the 0.5 standard de-

viation thresholds (not shown). Figure 1 illustrates the

positive phase composite of the DJF SAT anomalies

for each teleconnection index. One can notice that

the positive phases of the EAWR, SCAND, and PE

show large SAT anomalies over East Asia. The readers

are referred to the NOAA/CPC website for the geopo-

tential height fields associated with the teleconnection

patterns.

b. Hindcast simulations of GloSea5

To compare the statistical model performance with

that of a dynamical model, we examine hindcast simu-

lations of the Global Seasonal Forecast System, version

5 (GloSea5), a global atmosphere–land–ocean–sea ice

coupled model (MacLachlan et al. 2015) composed of

HadGEM3, JULES, and NEMO of the UKMet Office,

FIG. 4. The DJFHSS of GloSea5 hindcast simulations for lead times of 1–6 weeks, shown in Fig. 3, is averaged over (a) East Asia and its

three subdomains: (b) the Korean peninsula and Japan, (c) China, and (d) Mongolia. (e) The domain for all of East Asia is marked with

a blue contour.
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as well as CICE of Los Alamos National Laboratory.

Three 60-day ensemble simulations, which are initial-

ized on days 1, 9, 17, and 25 of each month from 1991

through 2010, are provided by theKoreaMeteorological

Administration. This 20-yr time period is shorter than

the 36-yr time period of the statistical model. However,

we note that the results of the statistical model in this

study are similar when evaluated for the shorter time

period. That is, the pattern correlation between the

statistical model results for 1979–2014 (which are shown

later in Fig. 5) and the same model for 1991–2010 ex-

ceeds the value of 0.72 throughout all lead times.

The atmosphere model outputs, which have a hori-

zontal resolution of 0.568 latitude and 0.838 longitude,
are interpolated onto the 2.58 horizontal resolution grid

for comparison with the ERA-Interim data. The model

bias is corrected by subtracting the difference between

the lead-dependent model climatology and the ERA-

Interim climatology of the same period. A 7-day running

average is applied to the bias-corrected anomalies and

for anomalies in the ERA-Interim data.

c. The composite-based model

Following Johnson et al. (2014), we first find the upper

and lower terciles at each grid point in order to cate-

gorize above and below average SATs. The terciles

are defined by the SAT anomaly distribution for each

calendar day with a 21-calendar-day window, where the

window includes 10 calendar days before and after the

target calendar day. Here the window size is chosen to

be more generous than the 7-day window chosen in

Johnson et al. (2014) in order to allow for a greater

sample size, but the results of this study are not sensitive

to the size of the window.

The next step is to identify the changes in the SAT

probability distribution associated with the initial state

of the climate modes for six weekly lags. For this a cal-

culation, we use all days that the teleconnection indices

have an amplitude that exceeds 0.5 standard deviations.

To do so, we calculate the lagged response in the mean

and variance of the SAT anomalies associated with each

climate mode for each grid point and time lag with the

21-calendar day window. That is, for a given climate

mode in the initial state, we generate the probabilistic

forecast by producing a Gaussian distribution based on

the calculatedmean and variance for each grid point and

time lag. The Gaussian assumption may break down

over regions where the SAT distribution is considerably

skewed, and/or heavily or lightly tailed. This includes

the U.S. Pacific Northwest and Europe, where the SAT

distribution is negatively skewed, and the tropical east-

ern Pacific, where the distribution is positively skewed

(Fig. 2). Large values of kurtosis also can be seen in the

skewed regions. Over large areas of East Asia, it can be

FIG. 5. As in Fig. 3, but for the HSS obtained from the statistical model using the initial state of the EAWR

teleconnection pattern for six different weekly lead times during DJF. The shading interval is 2.5. Stippling in-

dicates the values that exceed the 95% confidence level.
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seen that the SAT distribution deviates from Gaussian.

However, an advantage of this Gaussian assumption is

that the probability distribution can be stored and re-

constructed using the two parameters. For the leave-

one-year-out cross-validation approach, the statistics

are calculated for every year using all data excluding the

chosen year. The predictions are then made for the year

that was left out of the training data.

The Heidke skill score (HSS) is used to evaluate the

probabilistic forecasts. The HSS is a common metric

used by operational forecast centers such as NOAA

CPC for probabilistic forecast verification. Using the

terciles and probabilistic distributions, we assign one of

the three forecast categories (top, middle, or bottom

terciles) based on the highest of the three forecast

probabilities. The HSS is determined by the number of

categories forecasted correctly H, the expected number

of categories forecasted correctly just by chance E, and

the total number of forecasts T, and is expressed as

HSS5
H2E

T2E
3 100 (%).

For a random forecast, E has an expected value of T/3.

Extreme values of HSS are 250 (all forecasts being

wrong) and 100 (a perfect set of forecasts). An HSS

value of 0 corresponds to the expected score from a

random set of forecasts, and positive values indicate

some level of skill. We note that when computed using

the joint distribution of forecasts and observations,

which does not use the assumption of E5T/3 [e.g., Eq.

(8.22) in Wilks (2011)], the HSS values in our results are

robust (i.e., the pattern correlations between skill maps

are;0.98 for all lead times). Also, the Peirce skill score

(PSS), a score similar to the HSS but formulated to have

an unbiased denominator, shows only negligible differ-

ences from the HSS (not shown). The pattern correla-

tions between the HSS and PSS are again ;0.98 for all

lead times.

FIG. 6. As in Figs. 4a–d, with DJF HSS averaged over the four domains (black lines), but the HSS values are

obtained from the statistical model for the EAWR teleconnection pattern, shown in Fig. 5. The domain averages

are also separately performed for the positive (red), neutral (green), and negative (blue) EAWR phases.
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3. Results

a. The wintertime HSS of GloSea5

We start by examining the HSS of the GloSea5 hind-

cast experiments for lead times of 1–6weeks (Fig. 3). This

establishes a skill baseline to place the statistical fore-

cast model results in context. Here and in all subse-

quent figures, we focus on the skill during DJF. The

forecast categories for weekly lead times are determined

from the ensemble averages of the three deterministic

forecasts.

Figure 3 illustrates the simple fact that the SAT in the

dynamical model is highly forecastable for the first few

weeks, but the forecastability quickly degrades with

time. This is particularly true for SAT over land where

the time scale of atmospheric processes dominates. In

contrast, over the ocean, theHSS tends to persist longer,

probably owing to the longer memory of the initial state.

For example, the value of the HSS at lag 11 week ex-

ceeds 50 over large areas of land, but at lag 16 weeks,

the HSS drops to approximately 0 over most of land

areas, indicating that at this forecast time the model’s

prediction is no better than a random guess. In contrast,

there are large swaths of ocean that retain large HSS

values at lag16 weeks, with the HSS showing its largest

persistence over the tropical eastern Pacific. For lags

beyond 3 weeks, the HSS values are the smallest in the

midlatitudes. One possible contribution to this result is

the fact that the signal of the MJO is stronger in the

tropics and Arctic than it is in the midlatitudes (Yoo

et al. 2014).

When the HSS is averaged over the domains of our

interest, a dramatic decline of the HSS can be clearly

seen (Figs. 4a–d). The domain of East Asia and its three

subdomains (i.e., the Korean Peninsula and Japan,

China, and Mongolia) do not include grid points over

ocean and are shown by blue contours in Fig. 4e. In all

four domains, the HSS values start roughly near 40 at

lag 11 week, and they quickly decline to near 20 at

lag 12 weeks. Eventually, all HSS values approach 0 in

all domains by lags 15 and 16 weeks. We note that the

values and their behaviors with time are similar to that

of CFSv2 over North America (Fig. 3c in Johnson et al.

2014). The rapid decline of the dynamical model skill is

an indicator of why a statistical model can be competi-

tive with or even superior to the dynamical model for

lead times of 3 weeks and beyond, as the HSS values

range between 4 and 7 at those lead time scales depending

on the activity of the ENSO and MJO (Figs. 3a,b in

Johnson et al. 2014).

b. Individual teleconnection indices

In this subsection, we present the statistical model

results based on each teleconnection pattern in Fig. 1.

FIG. 7. As in Fig. 5a, the DJF HSSs for lag11 week are shown except that the statistical models here depend on

the initial state of the SCAND, EA, WP, PNA, NAO, and PE teleconnection patterns, respectively. The shading

interval is 2.5. As in Fig. 5, stippling is used to indicate the values that exceed the 95% confidence level.
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We first carefully describe the EAWR results for all six

lags. Then the results of the rest of the teleconnection

patterns are shown.

Figure 5 illustrates the enhanced prediction skill using

only the initial state of the EAWR as the predictor,

averaged for all phases. The HSS is averaged for DJF as

in the dynamical model results in Fig. 3. The statistical

significance of the HSS values is examined at the 95th

percentile using Monte Carlo resampling at each grid

point. To preserve the autocorrelation, the resampling is

performed by reshuffling individual seasons, instead of

individual days. TheHSS values are computed 500 times

with randomly resampled forecasts and verification fields.

The p values of the Monte Carlo test averaged over East

Asia range from 0.03 to 0.18 for the EAWR during the

6-week lead times. A quick visual inspection makes it

clear that the signal of the EAWR is apparently visible

over central and East Asia and the Middle East, co-

inciding with the location of the EAWR mode (Fig. 1a).

Near 508N, 1608E, the maximum HSS values at lag

11 week are above 15, and the enhanced skill remains

quite persistent for 2–4 weeks over East Asia. At lag15

and 16 weeks, the HSS values over East Asia are be-

tween 2.5 and 7.5. One can also see enhanced skill over

the equatorial and subtropical eastern Pacific. This is

possibly due to the fact that the EAWR is linked with

ENSO.As a result, the skill for the eastern Pacific is quite

high, withHSS values ranging from 2.5–10 at lag11 week

to 5–10 at lag 16 weeks.

When averaged over East Asia for all EAWR phases

(black line in Fig. 6a), it can be seen that the EAWR

provides potentially useful skill. All phases refer to both

positive and negative phases and the neutral phase,

where the neutral EAWR phase is defined, as men-

tioned in section 2, when the index falls between 20.5

and 0.5 standard deviations. The value of the HSS value

starts off at 10 at lag11 week, and slowly drops from 6 to

3.5 from lag 12 to 16 weeks. Compared to the results

FIG. 8. As in Fig. 6a, the DJF HSSs averaged for the lead times of 1–6 weeks over East Asia (black) except that the results are for the

following six teleconnection patterns: SCAND, EA,WP, PNA, NAO, and PE. The domain averages are performed for the positive (red),

neutral (green), and negative (blue) phases of the corresponding patterns.
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from GloSea5 (Fig. 4a), these values may not seem very

impressive, especially for the earlier lags. However, it is

important to note that the EAWR model outperforms

GloSea5 at lag15 weeks, although very marginally, and

provides skill beyond that of a random forecast out to

lag 16 weeks. Over the Korean Peninsula and Japan,

the benefits of using the EAWR are better. The domain-

averaged HSS values begin with 14 at lag 11 week and

decline to 7–4 at later lags (black line in Fig. 6b). For

Mongolia, the values begin at 14 at lag 11 week and

come down to 1 at lag 16 weeks (black line in Fig. 6d).

The results for China are not too different from those of

East Asia because in terms of area, China occupies most

of East Asia (black line in Fig. 6c).

When the EAWR is active (i.e., excluding the neutral

phase), the EAWR becomes an even better source of

prediction skill. In Fig. 6, it can be seen that the positive

(red lines) and negative (blue lines) phases generally

result in clear elevations in skill compared to the neutral

EAWR phase (green lines). For example, over East

Asia, when the initial state of the EAWR is negative, the

values of HSS start from 16 at lag 11 week and decline

to 5–6 (blue line in Fig. 6a). Such a boost in the HSS

value is also apparent for the Korean Peninsula and

Japan for both the positive and negative phases (red and

blue lines in Fig. 6b, respectively). In all domains, the

neutral EAWR almost always provides little skill (green

lines in Fig. 6).

Next, we move on to the results for the other six

teleconnection patterns, the SCAND, PE, WP, PNA,

NAO, and EA patterns. Figure 7 shows the HSS values

of each pattern for lag 11 weeks only. Consistent with

the results of the EAWR, elevation in skill is apparent

over the regions where the teleconnection patterns

are most influential. For example, high HSS values for

SCAND, EA, and NAO are clearly marked over the

North Atlantic (Figs. 7a,b,e), while the increase of skill

for the WP and PNA takes place over the North Pacific

(Figs. 7c,d). The results for the other lags are also con-

sistent with the results of the EAWR, which illustrate

a persistent yet stable decline of the initial HSS values

with lag (not shown).

FIG. 9. As in Fig. 8, but for the domain of the Korean Peninsula and Japan.
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For East Asia, a comparison between the six modes

reveals that two teleconnection patterns, SCAND

and PE, contribute the most to the prediction skill at

lag11 week (Figs. 7a–c). However, at lag16 weeks, all

the six teleconnection patterns provide skill with HSS

values generally ranging from 1–4. When domain aver-

aged for East Asia, the SCAND and PE predictors yield

high HSS values at lag 11 week of about 8 and 6, re-

spectively, and at lag16 weeks values of 3–4 (black lines

in Figs. 8a,b). The other four modes (i.e., WP, PNA,

NAO, and PE) contribute slightly less to the skill

(Figs. 7c–f). Over East Asia, the HSS values of WP,

PNA, NAO, and PE range from approximately 1 to 4

throughout the lead times (Figs. 8c–f).

Over the Korean Peninsula and Japan, SCAND and

PE (Figs. 9a,b) provide better values than the other four

teleconnection patterns (Figs. 9c–f). For SCAND, the

HSS values begin with 8 at lag 11 week and drops to

1–3 at lag 15 and 16 weeks. The HSS values obtained

from PE starts with 6 at lag 11 weeks and decrease to

4 at lag 16 weeks. For the other four modes, the skill

averaged over the Korea Peninsula and Japan lies be-

tween 1 and 4 throughout the lead times.

The better performance of EAWR, SCAND, and PE

over East Asia can be expected, given that the three

modes are located upstream of the East Asia domain

(Figs. 1a–c). In contrast, the PNA, for instance, is lo-

cated too far downstream. Interestingly, the results

demonstrate that the leading-order atmospheric tele-

connection patterns in terms of explained variance may

not be the most important factor to consider for pre-

dictability of local climate. In other words, modes such

as the NAO and PNA are known to explain the largest

portion of the hemispheric geopotential height variance

and thus may be expected to provide the most skill when

averaged over the hemisphere. Instead, we find here that

adjacency and upstream location may be key consider-

ations for potential predictors.

When averaged over the positive and negative phases

at lag 11 week, the HSS fields of the active SCAND

phase (i.e., the positive and the negative phases) show

maximum values above 10 for East Asia (by averaging

FIG. 10. As in Fig. 6, but with the long-term linear SAT trend included as an additional predictor.
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the red and blue lines Fig. 8a) and near 10 for theKorean

Peninsula and Japan (Fig. 9a). The PE also show ele-

vated maximum HSS values near 8 for East Asia (red

and blue lines in Fig. 8b) and 18 for the Korean Penin-

sula and Japan (Fig. 9b) during the active phases. A

value near 10 or above from a single teleconnection

pattern is an impressive result, considering for North

America that a HSS value of about 7 was achieved only

when both the ENSO and MJO were collectively active

(Fig. 3b in Johnson et al. 2014).

Having demonstrated that skillful predictions for East

Asia beyond 4–5-week lead times can be achieved by

utilizing the Northern Hemisphere teleconnection pat-

terns, we explore whether the long-term linear SAT

trend further enhances the skill for the region. In Johnson

et al. (2014), it was shown that the long-term trend, when

combined with information of the ENSO and MJO

phases, adds an HSS value of approximately 2 over

North America (see their Fig. 3a), and hence the trend

can be an important source of skill. Importantly, the

increase of skill by the long-term trend takes place at all

lead times, which therefore helps the statistical model to

surpass the performance of the dynamical model at ear-

lier lead times.

Consistent with Johnson et al. (2014), we find a boost

in HSS values over East Asia when the long-term trend

is included as an additional predictor. The forecasts

based on both the EAWR and trend show HSS values

near 6–7 at lag15 and16 weeks (black line in Fig. 10a).

This corresponds to an increase of HSS values by 2–3,

compared to the forecasts solely based on the EAWR

(black line in Fig. 6a). The increase can be similarly

identified in all the other subdomains (Figs. 6b–d and

10b–d). Also, the boost in HSS values can generally be

seen for all lead times in all subdomains when the skill is

compared by each phase (colored lines in Figs. 6 and 10).

We also combine the long-term trend with the other

teleconnection patterns. As for the result with the EAWR,

as in Johnson et al. (2014) the enhancement of skill is

evident for all the teleconnection patterns over East

Asia (Fig. 11) and its subdomains (not shown), although

for some teleconnection patterns, such as the PE and

FIG. 11. As in Fig. 8, but with the long-term linear SAT trend included as an additional predictor.
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NAO, the HSS values at shorter leads are compromised.

For instance, based on the PE and long-term trend, the

HSS value starts at 7 (Fig. 11b) instead of 13 as for the case

solely based on the PE (Fig. 9b). However, the increase of

HSS values at longer leads is an important advantage for

surpassing the skill of dynamical models.

Last, we examine the reliability of the forecasts for

upper and lower terciles. Figure 12 shows the calibration

functions of the model using the EAWR and the trend

for lag 13 weeks as a representative result since the

statistical model andGloSea5 show similar performance

at that lag. Here, as in Johnson et al. (2014), information

on forecast probability frequency is incorporated into

the calibration function. That is, we have binned the

forecast probability frequency so that each bin contains

10% of the forecasts. The relative frequency of occur-

rence of the verified category is therefore computed for

each forecast probability bin. Overall, calibration func-

tions are well centered over the diagonal, indicating that

the forecasts are not likely to be biased (black lines).

Also, the calibration functions generally show slopes

slightly less than 1, representing overconfidence of the

forecasts. Over the Korean Peninsula and Japan, the

confidence of the forecasts (Figs. 12c,d) appears worse

than that for East Asia.When sampled for active phases,

the forecasts are better calibrated (orange lines) than all

phases (black lines). The neutral phase forecasts tend to

be poorly calibrated (green lines), which is not surpris-

ing, given that the signal is weak.

4. Summary and discussion

We have constructed a composite-based statistical

model to predict the East Asian wintertime SAT for

lead times out to 6 weeks. The modeling technique was

originally reported by Johnson et al. (2014) using the

ENSO, MJO, and linear trend for North America.

The present study attempted to utilize low-frequency

FIG. 12. Calibration functions for (a),(c) lower and (b),(d) upper tercile forecasts for a 3-week lead time using the

initial state of the EAWR and the long-term trend, for (top) East Asia and (bottom) the Korean Peninsula and

Japan. Each point contains 10%of the forecasts for the corresponding category. The black lines show the results for

all phases, while the orange and green lines are when all the four teleconnection patterns are in active and neutral

phases, respectively.
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atmospheric circulation anomalies represented by seven

Northern Hemisphere atmospheric teleconnection pat-

terns (i.e., the EAWR, SCAND, EA, WP, NAO, PNA,

and PE patterns) as a potential source of prediction skill.

The effect of the linear trend is also tested in combina-

tion with the teleconnections.

The study demonstrates that the following three tele-

connections make a substantial contribution to East

Asian subseasonal prediction of SAT. These are the

EAWR, SCAND, and PE patterns, which are posi-

tioned upstream of the region. When such modes are

employed individually, the statistical model generates

forecasts that show comparable skill with that of dy-

namical model at a lead time of 4 weeks and longer. This

is especially true when the amplitude of the telecon-

nection pattern is large. More interestingly, our results

show that when the initial information of the telecon-

nection patterns is combined with the long-term trend,

the skill is substantially enhanced for lead times beyond

3 weeks. This is a great advantage because it is at these

longer lead times that the dynamical model suffers

from a rapid decline of prediction skill.

It is not clear at this point exactly how the tele-

connections provide skill beyond their decorrelation

time scales of ;2 weeks. One may speculate that the

skill may be largely due to a small number of much

longer persistent events. It is also possible that the SAT

anomalies associated with the teleconnections can re-

main for a longer period of time through feedback

processes with the land surface. In addition, combina-

tions of teleconnections may be utilized to boost pre-

diction skill for lead times beyond 3 weeks. We plan to

address these questions in our future study.

Our approach using atmospheric teleconnections

has implications for other regions of the globe. Over

Europe, the Middle East, and northern Africa, forecasts

based on the initial state of EA, SCAND, EAWR, and

the NAO, along with the long-term trend, yield HSSs

exceeding 10 at lead times of 3–4 weeks (not shown).

The Gaussian assumption may need to be relaxed for

some of the regions due to less normality in the tem-

perature distributions.
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APPENDIX A

Uncertainty of the Spatial Interpolation

The ERA-interim data used in the study are originally

on a reduced 512 3 256 longitude/latitude Gaussian

grid. We use bilinear interpolation to regrid the data to

the 2.58 horizontal resolution. The choice of bilinear

interpolation is made because the 2-m temperature is

highly spatially correlated and hence is smoothly varying

in space, and the purpose of the regridding is to remove

small-scale features, as our focus is to examine SAT

forecasts at spatial scales that are much greater than the

2.58 horizontal resolution. Furthermore, because we use

the smoothed data as our ground truth, we believe that

FIG. A1. Time mean for the year 2000 of half of the absolute difference between the

original ERA-Interim data and the reconstructed data through bilinear interpolation at the

reduced 512 3 256 Gaussian grid.

9364 JOURNAL OF CL IMATE VOLUME 31



the errors arising from the interpolation are not neces-

sarily related to errors in our forecasts. That being

said, we quantify the possible error of the spatial in-

terpolation scheme by computing the half of the absolute

difference between the original data and the reconstructed

data at the original 512 3 256 Gaussian grid. Here the

reconstructed data have gone through the interpolation

twice, from the original to coarse and then back to the

original grid. Figure A1 shows the time-averaged values

of the difference for the year 2000. The data loss is most

clear over mountainous regions. Also, over some non-

mountainous regions, such as Siberia, Iceland, the Sa-

hara, and the Sahel, the data loss can be identified.

APPENDIX B

Uncertainty of the Temporal Downscaling

The uncertainty of the temporal downscaling tech-

nique on the monthly CPC teleconnection indices is

documented here. The daily PNA and NAO indices are

constructed using this technique and are then compared

with the daily indices obtained from the CPC. The five-

number summary of the difference between the tem-

porally downscaled index and the CPC daily index for

DJF is computed (Table B1). The five-number summary

of the difference suggests that the CPC daily index tends

to be greater than the value of the downscaled one.

Linear correlations between the indices are 0.82 and

0.79 for the PNA and NAO, respectively. Based on the

correlation values, we estimate that the amounts of

variance overlap between the two indices are 67.24%

and 62.41% for the PNA and NAO, respectively.
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